skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eichstaedt, Johannes C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Trust is predictive of civic cooperation and economic growth. Recently, the U.S. public has demonstrated increased partisan division and a surveyed decline in trust in institutions. There is a need to quantify individual and community levels of trust unobtrusively and at scale. Using observations of language across more than 16,000 Facebook users, along with their self-reported generalized trust score, we develop and evaluate a language-based assessment of generalized trust. We then apply the assessment to more than 1.6 billion geotagged tweets collected between 2009 and 2015 and derive estimates of trust across 2,041 U.S. counties. We find generalized trust was associated with more affiliative words (love, we, andfriends) and less angry words (hateandstupid) but only had a weak association with social words primarily driven by strong negative associations with general othering terms (“they” and “people”). At the county level, associations with the Centers for Disease Control and Prevention (CDC) and Gallup surveys suggest that people in high-trust counties were physically healthier and more satisfied with their community and their lives. Our study demonstrates that generalized trust levels can be estimated from language as a low-cost, unobtrusive method to monitor variations in trust in large populations. 
    more » « less
  2. Abstract Background Oral histories from 9/11 responders to the World Trade Center (WTC) attacks provide rich narratives about distress and resilience. Artificial Intelligence (AI) models promise to detect psychopathology in natural language, but they have been evaluated primarily in non-clinical settings using social media. This study sought to test the ability of AI-based language assessments to predict PTSD symptom trajectories among responders. Methods Participants were 124 responders whose health was monitored at the Stony Brook WTC Health and Wellness Program who completed oral history interviews about their initial WTC experiences. PTSD symptom severity was measured longitudinally using the PTSD Checklist (PCL) for up to 7 years post-interview. AI-based indicators were computed for depression, anxiety, neuroticism, and extraversion along with dictionary-based measures of linguistic and interpersonal style. Linear regression and multilevel models estimated associations of AI indicators with concurrent and subsequent PTSD symptom severity (significance adjusted by false discovery rate). Results Cross-sectionally, greater depressive language ( β = 0.32; p = 0.049) and first-person singular usage ( β = 0.31; p = 0.049) were associated with increased symptom severity. Longitudinally, anxious language predicted future worsening in PCL scores ( β = 0.30; p = 0.049), whereas first-person plural usage ( β = −0.36; p = 0.014) and longer words usage ( β = −0.35; p = 0.014) predicted improvement. Conclusions This is the first study to demonstrate the value of AI in understanding PTSD in a vulnerable population. Future studies should extend this application to other trauma exposures and to other demographic groups, especially under-represented minorities. 
    more » « less